# Liquid Welfare Guarantees for Learning in Sequential Budgeted Auctions

## Giannis Fikioris and Éva Tardos

## Introduction

### Autobidders

Algorithms for online auctions

90% of ad dollars transacted using autobidders, over \$123 billion in US, 2022

Fast-changing environment, hard budget limits

### **Player Assumptions**

T rounds/items

*n* players

Player *i*'s value in round  $t: v_{it} \in [0, 1]$ 

Additive Valuations: If player *i* wins rounds  $S_i$ , total value is  $V_i = \sum_{t \in S_i} v_{it}$ 

Budgeted quasi-linear utilities: Budget  $B_i$  and payment  $P_i$  then utility

 $U_i = \begin{cases} V_i - P_i, & \text{if } P_i \le B_i \\ -\infty, & \text{otherwise} \end{cases}$ 

### Liquid Welfare

Generalization of social welfare for budget-limited players

Player *i* has liquid welfare

$$\mathsf{LW}_i = \min\{V_i, B_i\}$$

Total liquid welfare is  $LW = \sum_i LW_i$  and optimal is LW\*

### Shading Multipliers to bid

Control spending when budget constrained

Shade value to bid  $\lambda v_{it}$  for some  $\lambda \in [0,1]$ 

Balseiro and Gur 2017: iteratively adapt shading multiplier for individual utility guarantees in second-price, e.g. no-regret

Gaitonde et al. 2023: above algorithm by all players implies  $LW \ge \frac{1}{2}LW^*$  (for iid player values)

### Behavioral Assumption

Player *i* has competitive ratio  $\gamma \ge 1$ and **regret** Reg if competitive with best multiplier in hindsight:  $U_i \ge \frac{\sup_{\lambda \in [0,1]} \hat{U}_i(\lambda) - \operatorname{Reg}}{\gamma}$ 

 $U_i(\lambda)$ : player *i*'s utility if she used multiplier  $\lambda$  every round, i.e. bid  $\lambda v_{it}$  until out of budget

### (Lack of) Guarantees in Second-price Auctions

Even if • *n* = 2 • y = 1•  $\operatorname{Reg} = 0$  constant player values it can hold  $\frac{LW}{LW^*} = 0$ 

## Cornell University

## Welfare Guarantees in First-price

### First-price Auctions

If every player has competitive ratio Player *i* with additive valuation can guarantee with high probability at most  $\gamma$  and regret Reg, then

$$LW \ge \frac{LW^* - O(n)Reg}{\gamma + \frac{1}{2} + O\left(\frac{1}{\gamma}\right)}$$

Denominator becomes 2.41 when  $\gamma = 1$ 

- Player values can be **adversarial**
- Any player algorithms with the behavioral assumption

More general result than previous work

### First-price Upper Bounds

For any  $\gamma \geq 1$  if • *n* = 2 • Reg = 0 constant player values it can hold that  $LW \leq \frac{1}{\max\{\gamma,2\}}LW^*$ 

### Submodular valuations

If players have submodular valuations across rounds then

$$LW \ge \frac{LW^* - O(n)Reg}{\gamma + 1 + O\left(\frac{1}{\gamma}\right)}$$

Denominator becomes 2.62 when  $\gamma = 1$ 

of

### Algorithmic Results

 $U_i \ge \frac{\sup_{\lambda \in [0,1]} \hat{U}_i(\lambda) - \tilde{O}\left(T^{3/2}/B_i\right)}{T/B_i}$ 

for adversarial player values and bids

Meaningful guarantee if  $B_i \ge T^{1/2+\Omega(1)}$ 

### Conclusion

Weak individual player guarantees imply aggregate welfare in first-price, even for adversarial player values

In high contrast to second-price where no such guarantees hold

### Contact Info

gfikioris@cs.cornell.edu

