LIQUID WELFARE GUARANTEES FOR NO-REGRET LEARNING IN SEQUENTIAL BUDGETED AUCTIONS EC 2023

GIANNIS FIKIORIS, ÉVA TARDOS

CORNELL UNIVERSITY

- T rounds
- n players
- Value $v_{it} \in [0, 1]$

- T rounds
- n players
- Value $v_{it} \in [0, 1]$
- $\blacksquare V_i = \sum_{t:\text{won}} v_{it}$

- T rounds
- n players
- Value $v_{it} \in [0, 1]$
- $V_i = \sum_{t:won} V_{it}$
- Utilities are *budgeted quasi-linear*:

$$U_{i} = \begin{cases} V_{i} - P_{i}, & \text{if } P_{i} \leq B_{i} \\ -\infty, & \text{otherwise} \end{cases}$$

- T rounds
- n players
- Value $v_{it} \in [0, 1]$
- $V_i = \sum_{t:won} V_{it}$
- Utilities are budgeted quasi-linear:

$$U_i = \begin{cases} V_i - P_i, & \text{if } P_i \leq B_i \\ -\infty, & \text{otherwise} \end{cases}$$

Adaptive Pacing Algorithm \mathcal{R}_{AP}

[Balseiro-Gur, EC'17]

- Adaptive Pacing Algorithm \mathcal{R}_{AP}
- Cooperation guarantee:

- Adaptive Pacing Algorithm *A*_{AP}
- Cooperation guarantee: for all *i*

$$U_i \geq \max_{\vec{b}'_i} \left(\hat{U}_i(\vec{b}'_i) \right) - \tilde{O}(\sqrt{T})$$

- Adaptive Pacing Algorithm *A*_{AP}
- Cooperation guarantee: for all *i*

$$U_i \geq \max_{\vec{b}'_i} \left(\hat{U}_i(\vec{b}'_i) \right) - \tilde{O}(\sqrt{T})$$

Adversarial guarantee:

- Adaptive Pacing Algorithm \mathcal{R}_{AP}
- Cooperation guarantee: for all i

$$U_i \ge \max_{\vec{b}'_i} \left(\hat{U}_i(\vec{b}'_i) \right) - \tilde{O}(\sqrt{T})$$

Adversarial guarantee: for some $\gamma \ge 1$

$$U_{i} \geq \frac{\max_{\vec{b}_{i}'} \left(\hat{U}_{i}(\vec{b}_{i}') \right) - \tilde{O}(\sqrt{T})}{\gamma}$$

Liquid welfare¹:

- Social welfare for Budgeted settings
- ▶ LW_i = min{ B_i , V_i }
- \blacktriangleright LW = \sum_{i} LW_i

¹[Dobzinski-Paes Leme, ICALP'14]

Liquid welfare¹:

- Social welfare for Budgeted settings
- ▶ $LW_i = min\{B_i, V_i\}$
- ► LW = \sum_i LW_i

- Liquid welfare¹:
 - Social welfare for Budgeted settings
 - ▶ LW_i = min{ B_i, V_i }
 - \blacktriangleright LW = \sum_{i} LW_i
- On expectation²

$$\mathtt{LW} \geq \frac{\mathtt{LW}^* - \tilde{O}(n\sqrt{T})}{2}$$

- Liquid welfare¹:
 - Social welfare for Budgeted settings
 - ▶ $LW_i = min\{B_i, V_i\}$
 - \blacktriangleright LW = \sum_{i} LW_i
- On expectation²

$$\texttt{LW} \geq \frac{\texttt{LW}^* - \tilde{O}(n\sqrt{T})}{2}$$

Everyone uses \mathcal{R}_{AP}

- Liquid welfare¹:
 - Social welfare for Budgeted settings
 - ▶ LW_i = min{ B_i, V_i }
 - \blacktriangleright LW = \sum_{i} LW_i
- On expectation²

$$\texttt{LW} \geq \frac{\texttt{LW}^* - \tilde{O}(n\sqrt{T})}{2}$$

- Everyone uses \mathcal{R}_{AP}
- Values are Bayesian

Do individual guarantees imply welfare guarantees?

Do individual guarantees imply welfare guarantees?

- Do individual guarantees imply welfare guarantees?
- Not in second-price

[Gaitonde-Light-Lucier-Slivkins, ITCS'23]

- Do individual guarantees imply welfare guarantees?
- Not in second-price

►
$$v_{1t} = v_{2t} = 1$$

►
$$\gamma = 1$$
, Reg = 0

[Gaitonde-Light-Lucier-Slivkins, ITCS'23]

- Do individual guarantees imply welfare guarantees?
- Not in second-price
 - ▶ *n* = 2

$$V_{1t} = V_{2t} = 1$$

•
$$\gamma = 1$$
, Reg = 0

 $\blacktriangleright LW = \varepsilon LW^*$

SEQUENTIAL BUDGETED FIRST-PRICE AUCTIONS

$$\max_{\vec{b}_i} \left(\hat{U}_i(\vec{b}_i) \right)$$

$$\max_{\vec{b}_i} \left(\hat{U}_i(\vec{b}_i) \right)$$

■ Too strong for first-price, even when unbudgeted:

$$\max_{\vec{b}_i} \left(\hat{U}_i(\vec{b}_i) \right)$$

- Too strong for first-price, even when unbudgeted:
 - Second-price: bid value, Reg = 0

$$\max_{\vec{b}_i} \left(\hat{U}_i(\vec{b}_i) \right)$$

- Too strong for first-price, even when unbudgeted:
 - Second-price: bid value, Reg = 0
 - First-price: $\operatorname{Reg} \geq \Omega(T)$

SEQUENTIAL BUDGETED FIRST-PRICE AUCTIONS – BENCHMARK

Best 'action' in hindsight

- Best 'action' in hindsight
- Shading multiplier $\lambda \in [0, 1]$: bid λv_{it}

- Best 'action' in hindsight
- Shading multiplier $\lambda \in [0, 1]$: bid λv_{it}
- Best multiplier in hindsight: $\max_{\lambda \in [0,1]} \hat{U}_i(\lambda)$

- Best 'action' in hindsight
- Shading multiplier $\lambda \in [0, 1]$: bid λv_{it}
- Best multiplier in hindsight: $\max_{\lambda \in [0,1]} \hat{U}_i(\lambda)$
- Shading multipliers in \mathcal{R}_{AP} :

- Best 'action' in hindsight
- Shading multiplier $\lambda \in [0, 1]$: bid λv_{it}
- Best multiplier in hindsight: $\max_{\lambda \in [0,1]} \hat{U}_i(\lambda)$
- Shading multipliers in \mathcal{R}_{AP} :
 - ▶ Player *i* bids $\lambda_{it} v_{it}$

- Best 'action' in hindsight
- Shading multiplier $\lambda \in [0, 1]$: bid λv_{it}
- Best multiplier in hindsight: $\max_{\lambda \in [0,1]} \hat{U}_i(\lambda)$
- Shading multipliers in \mathcal{R}_{AP} :
 - ▶ Player *i* bids $\lambda_{it} v_{it}$
 - Computes $\lambda_{i,t+1}$ based on spending

SEQUENTIAL BUDGETED FIRST-PRICE AUCTIONS – BENCHMARK

- Best 'action' in hindsight
- Shading multiplier $\lambda \in [0, 1]$: bid λv_{it}
- Best multiplier in hindsight: $\max_{\lambda \in [0,1]} \hat{U}_i(\lambda)$
- Shading multipliers in \mathcal{A}_{AP} :
 - ▶ Player *i* bids $\lambda_{it} v_{it}$
 - Computes \u03c6_{i,t+1} based on spending

GUARANTEES IN SEQUENTIAL FIRST-PRICE AUCTIONS

Theorem - Liquid Welfare guarantee

If players are γ -competitive then

$$LW \ge rac{LW^* - O(nReg)}{\gamma + rac{1}{2} + O\left(rac{1}{\gamma}
ight)}$$

GUARANTEES IN SEQUENTIAL FIRST-PRICE AUCTIONS

Theorem - Liquid Welfare guarantee

If players are γ -competitive then

$$LW \geq \frac{LW^* - O(nReg)}{\gamma + \frac{1}{2} + O\left(\frac{1}{\gamma}\right)}$$

Denominator is 2.41 when $\gamma = 1$

1. $\hat{U}_i(\lambda)$ is "high"

- 1. $\hat{U}_i(\lambda)$ is "high"
 - If λ runs out of budget:

$$\hat{U}_i(\lambda) \geq \left(\frac{1}{\lambda} - 1\right) B_i$$

- 1. $\hat{U}_i(\lambda)$ is "high"
 - If λ runs out of budget:

$$\hat{U}_i(\lambda) \geq \left(\frac{1}{\lambda} - 1\right) B_i$$

• If λ does not run out of budget:

$$\hat{U}_i(\lambda) \ge f(\lambda) LW_i^* - g(\lambda) \sum_{t \in O_i} p_t$$

- 1. $\hat{U}_i(\lambda)$ is "high"
 - If λ runs out of budget:

$$\hat{U}_i(\lambda) \ge \left(\frac{1}{\lambda} - 1\right) B_i$$

• If λ does not run out of budget:

$$\hat{U}_i(\lambda) \ge f(\lambda) LW_i^* - g(\lambda) \sum_{t \in O_i} p_t$$

2. LW_i is "high"

- 1. $\hat{U}_i(\lambda)$ is "high"
 - If λ runs out of budget:

$$\hat{U}_i(\lambda) \geq \left(\frac{1}{\lambda} - 1\right) B_i$$

• If λ does not run out of budget:

$$\hat{U}_i(\lambda) \ge f(\lambda) LW_i^* - g(\lambda) \sum_{t \in O_i} p_t$$

- 2. LW_i is "high"
 - If $V_i \leq B_i$: utility bound

- 1. $\hat{U}_i(\lambda)$ is "high"
 - If λ runs out of budget:

$$\hat{U}_i(\lambda) \geq \left(\frac{1}{\lambda} - 1\right) B_i$$

• If λ does not run out of budget:

$$\hat{U}_i(\lambda) \ge f(\lambda) LW_i^* - g(\lambda) \sum_{t \in O_i} p_t$$

- 2. LW_i is "high"
 - If $V_i \leq B_i$: utility bound
 - ▶ If $V_i > B_i$: LW_i = B_i

LIQUID WELFARE UPPER BOUNDS

For any $\gamma \ge 1$ even if

LIQUID WELFARE UPPER BOUNDS

For any $\gamma \ge 1$ even if

■ *n* = 2

- $\mathbf{V}_{it} = \mathbf{V}_i$
- **players are** γ **-competitive,** Reg ≤ 1

LIQUID WELFARE UPPER BOUNDS

For any $\gamma \ge 1$ even if

■ *n* = 2

$$\mathbf{v}_{it} = \mathbf{v}_i$$

■ players are γ -competitive, Reg ≤ 1 it can hold

$$LW \leq \frac{LW^*}{\max\{\gamma, 2\}}$$

= ε

- $\blacksquare \forall i, \ U_i = \max_{\lambda} \hat{U}_i(\lambda)$
- $\blacksquare LW = \varepsilon T$

SEQUENTIAL SUBMODULAR FIRST-PRICE AUCTIONS

Theorem

If players are γ -competitive with submodular valuations then

$$LW \ge \frac{LW^* - O(nReg)}{\gamma + 1 + O\left(\frac{1}{\gamma}\right)}$$

Denominator is 2.62 when $\gamma = 1$.

SEQUENTIAL SUBMODULAR FIRST-PRICE AUCTIONS

Theorem

If players are γ -competitive with submodular valuations then

$$LW \ge \frac{LW^* - O(nReg)}{\gamma + 1 + O\left(\frac{1}{\gamma}\right)}$$

Denominator is 2.62 when $\gamma = 1$.

INDIVIDUAL PLAYER GUARANTEES FOR ADDITIVE VALUATIONS

INDIVIDUAL PLAYER GUARANTEES FOR ADDITIVE VALUATIONS

Theorem

Player *i* can guarantee with high probability

$$U_i \geq \frac{\max_{\lambda} \hat{U}_i(\lambda) - \tilde{O}(\sqrt{T})}{T/B_i}$$

if $B_i = \Omega(T)$.

INDIVIDUAL PLAYER GUARANTEES FOR ADDITIVE VALUATIONS

Theorem

Player *i* can guarantee with high probability

$$U_i \geq \frac{\max_{\lambda} \hat{U}_i(\lambda) - \tilde{O}(\sqrt{T})}{T/B_i}$$

if $B_i = \Omega(T)$.

- Matches \mathcal{R}_{AP}
- Best possible

- Second-price: 1-competitive ⇒ bounded PoA
- First-price: γ -competitive \implies PoA $\leq \gamma + \frac{1}{2} + O\left(\frac{1}{\gamma}\right)$
- PoA $\geq \max\{\gamma, 2\}$
- Submodular: PoA $\leq \gamma + 1 + O\left(\frac{1}{\gamma}\right)$
- Additive players can be $\frac{T}{B}$ -competitive

