Liquid Welfare Guarantees for No-Regret Learning in Sequential Budgeted Auctions

EC 2023
Giannis Fikioris, Éva Tardos
Cornell University

Sequential Budgeted Second-price Auctions

Sequential Budgeted Second-price Auctions

- T rounds
- n players
\square Value $v_{i t} \in[0,1]$

Sequential Budgeted Second-price Auctions

- T rounds
- n players
- Value $v_{i t} \in[0,1]$
$\square V_{i}=\sum_{t: w o n} v_{i t}$

Sequential Budgeted Second-price Auctions

- T rounds
- n players
- Value $v_{i t} \in[0,1]$
$\square V_{i}=\sum_{t: \text { won }} v_{i t}$
- Utilities are budgeted quasi-linear:

$$
U_{i}= \begin{cases}V_{i}-P_{i}, & \text { if } P_{i} \leq B_{i} \\ -\infty, & \text { otherwise }\end{cases}
$$

Sequential Budgeted Second-price Auctions

- T rounds
- n players
- Value $v_{i t} \in[0,1]$
$\square V_{i}=\sum_{t: w o n} v_{i t}$
- Utilities are budgeted quasi-linear:

$$
U_{i}= \begin{cases}v_{i}-P_{i}, & \text { if } P_{i} \leq B_{i} \\ -\infty, & \text { otherwise }\end{cases}
$$

Individual player guarantees

- Adaptive Pacing Algorithm $\mathcal{A}_{A P}$

[Balseiro-Gur, EC'17]

Individual player guarantees

- Adaptive Pacing Algorithm $\mathcal{A}_{A P}$
- Cooperation guarantee:

[Balseiro-Gur, EC'17]

Individual player guarantees

- Adaptive Pacing Algorithm $\mathcal{A}_{\text {AP }}$
- Cooperation guarantee: for all i

$$
U_{i} \geq \max _{\vec{b}_{i}^{\prime}}\left(\hat{U}_{i}\left(\vec{b}_{i}^{\prime}\right)\right)-\tilde{o}(\sqrt{T})
$$

[Balseiro-Gur, EC'17]

Individual player guarantees

- Adaptive Pacing Algorithm $\mathcal{A}_{\text {AP }}$
- Cooperation guarantee: for all i

$$
U_{i} \geq \max _{\vec{b}_{i}^{\prime}}\left(\hat{U}_{i}\left(\vec{b}_{i}^{\prime}\right)\right)-\tilde{o}(\sqrt{T})
$$

- Adversarial guarantee:

[Balseiro-Gur, EC'17]

Individual player guarantees

- Adaptive Pacing Algorithm $\mathcal{A}_{\text {AP }}$
- Cooperation guarantee: for all i

$$
U_{i} \geq \max _{\vec{b}_{i}^{\prime}}\left(\hat{U}_{i}\left(\vec{b}_{i}^{\prime}\right)\right)-\tilde{o}(\sqrt{T})
$$

- Adversarial guarantee: for some $\gamma \geq 1$

$$
u_{i} \geq \frac{\max _{\vec{b}_{i}^{\prime}}\left(\hat{U}_{i}\left(\vec{b}_{i}^{\prime}\right)\right)-\tilde{o}(\sqrt{T})}{\gamma}
$$

[Balseiro-Gur, EC'17]

Aggregate Guarantee

- Liquid welfare ${ }^{1}$:
- Social welfare for Budgeted settings
$\Rightarrow L_{i}=\min \left\{B_{i}, V_{i}\right\}$
- $L W=\sum_{i} L W_{i}$

Aggregate Guarantee

- Liquid welfare ${ }^{1}$:
- Social welfare for Budgeted settings
$\operatorname{LW}_{i}=\min \left\{B_{i}, V_{i}\right\}$
- $L W=\sum_{i} L W_{i}$

[^0]
Aggregate Guarantee

- Liquid welfare ${ }^{1}$:
- Social welfare for Budgeted settings
- $L W_{i}=\min \left\{B_{i}, V_{i}\right\}$
- $L W=\sum_{i} L W_{i}$
- On expectation ${ }^{2}$

$$
\mathrm{LW} \geq \frac{\mathrm{LW}^{*}-\tilde{O}(n \sqrt{T})}{2}
$$

${ }^{1}$ [Dobzinski-Paes Leme, ICALP'14]
${ }^{2}$ [Gaitonde-Light-Lucier-Slivkins, ITCS'23]

Aggregate Guarantee

- Liquid welfare ${ }^{1}$:
- Social welfare for Budgeted settings
- $L W_{i}=\min \left\{B_{i}, V_{i}\right\}$
- $L W=\sum_{i} L W_{i}$
- On expectation ${ }^{2}$

$$
\mathrm{LW} \geq \frac{\mathrm{LW}^{*}-\tilde{O}(n \sqrt{T})}{2}
$$

Everyone uses $\mathcal{A}_{A P}$

[^1]
Aggregate Guarantee

- Liquid welfare ${ }^{1}$:
- Social welfare for Budgeted settings
- $L_{i}=\min \left\{B_{i}, V_{i}\right\}$
- $L W=\sum_{i} L W_{i}$
- On expectation ${ }^{2}$

$$
\mathrm{LW} \geq \frac{\mathrm{LW}^{*}-\tilde{O}(n \sqrt{T})}{2}
$$

- Everyone uses $\mathcal{A}_{A P}$
- Values are Bayesian

player 1
$v_{1 t} \sim F_{1}$

$$
\begin{aligned}
& \text { player } i \\
& v_{i t} \sim F_{i}
\end{aligned}
$$

player n $v_{n t} \sim F_{n}$
$\forall i, U_{i} \geq \max _{\vec{b}_{i}^{\prime}}\left(\hat{U}_{i}\left(\vec{b}_{i}^{\prime}\right)\right)-\tilde{O}(\sqrt{T})$

Liquid Welfare of General Algorithms

- Do individual guarantees imply welfare guarantees?

Liquid Welfare of General Algorithms

- Do individual guarantees imply welfare guarantees?

Liquid Welfare of General Algorithms

- Do individual guarantees imply welfare guarantees?
- Not in second-price

[Gaitonde-Light-Lucier-Slivkins, ITCS'23]

Liquid Welfare of General Algorithms

- Do individual guarantees imply welfare guarantees?
- Not in second-price
- $n=2$
$v_{1 t}=v_{2 t}=1$
- $\gamma=1, \operatorname{Reg}=0$

[Gaitonde-Light-Lucier-Slivkins, ITCS'23]

Liquid Welfare of General Algorithms

- Do individual guarantees imply welfare guarantees?
- Not in second-price
- $n=2$
$v_{1 t}=v_{2 t}=1$
- $\gamma=1, \mathrm{Reg}=0$
- $\mathrm{LW}=\varepsilon \mathrm{LW}^{*}$

[Gaitonde-Light-Lucier-Slivkins, ITCS'23]

Sequential Budgeted First-price Auctions

Sequential Budgeted First-price Auctions

- Second-price: compete against

$$
\max _{\vec{b}_{i}}\left(\hat{U}_{i}\left(\vec{b}_{i}\right)\right)
$$

Sequential Budgeted First-price Auctions

■ Second-price: compete against

$$
\max _{\vec{b}_{i}}\left(\hat{U}_{i}\left(\vec{b}_{i}\right)\right)
$$

- Too strong for first-price, even when unbudgeted:

Sequential Budgeted First-price Auctions

- Second-price: compete against

$$
\max _{\vec{b}_{i}}\left(\hat{U}_{i}\left(\vec{b}_{i}\right)\right)
$$

- Too strong for first-price, even when unbudgeted:
- Second-price: bid value, Reg = 0

Sequential Budgeted First-price Auctions

- Second-price: compete against

$$
\max _{\vec{b}_{i}}\left(\hat{U}_{i}\left(\vec{b}_{i}\right)\right)
$$

- Too strong for first-price, even when unbudgeted:
- Second-price: bid value, Reg $=0$
- First-price: $\operatorname{Reg} \geq \Omega(T)$

Sequential Budgeted First-price Auctions - Benchmark

- Best 'action' in hindsight

Sequential Budgeted First-price Auctions - Benchmark

- Best 'action' in hindsight
- Shading multiplier $\lambda \in[0,1]$: bid $\lambda v_{i t}$

Sequential Budgeted First-price Auctions - Benchmark

- Best 'action’ in hindsight
- Shading multiplier $\lambda \in[0,1]$: bid $\lambda v_{i t}$
- Best multiplier in hindsight: $\max _{\lambda \in[0,1]} \hat{U}_{i}(\lambda)$

Sequential Budgeted First-price Auctions - Benchmark

- Best 'action' in hindsight
- Shading multiplier $\lambda \in[0,1]$: bid $\lambda v_{i t}$
- Best multiplier in hindsight: $\max _{\lambda \in[0,1]} \hat{U}_{i}(\lambda)$
- Shading multipliers in $\mathcal{A}_{A P}$:

Sequential Budgeted First-price Auctions - Benchmark

- Best 'action' in hindsight
- Shading multiplier $\lambda \in[0,1]$: bid $\lambda v_{i t}$
- Best multiplier in hindsight: $\max _{\lambda \in[0,1]} \hat{U}_{i}(\lambda)$
- Shading multipliers in $\mathcal{A}_{A P}$:
- Player i bids $\lambda_{i t} v_{i t}$

Sequential Budgeted First-price Auctions - Benchmark

- Best 'action' in hindsight
- Shading multiplier $\lambda \in[0,1]$: bid $\lambda v_{i t}$
- Best multiplier in hindsight: $\max _{\lambda \in[0,1]} \hat{U}_{i}(\lambda)$
- Shading multipliers in $\mathcal{A}_{A P}$:
- Player i bids $\lambda_{i t} v_{i t}$
- Computes $\lambda_{i, t+1}$ based on spending

Sequential Budgeted First-price Auctions - Benchmark

- Best 'action' in hindsight
- Shading multiplier $\lambda \in[0,1]$: bid $\lambda v_{i t}$
- Best multiplier in hindsight: max $\hat{U}_{i}(\lambda)$ $\lambda \in[0,1]$
- Shading multipliers in $\mathcal{A}_{A P}$:
- Player i bids $\lambda_{i t} v_{i t}$
- Computes $\lambda_{i, t+1}$ based on spending

player 1 $v_{1 t} \sim 6$

player i $v_{i t} \sim 6$

player n $v_{n t} \sim$ ©

$$
\forall i, \quad U_{i} \geq \frac{\max _{\lambda} \hat{U}_{i}(\lambda)-\operatorname{Reg}}{\gamma}
$$

Guarantees in Sequential First-price Auctions

Theorem - Liquid Welfare guarantee

If players are γ-competitive then

$$
\mathrm{LW} \geq \frac{\mathrm{LW} W^{*}-O(n \mathrm{Reg})}{\gamma+\frac{1}{2}+O\left(\frac{1}{\gamma}\right)}
$$

player i $v_{i t} \sim$

player n $v_{n t} \sim 0$

$$
\forall i, U_{i} \geq \frac{\max _{\lambda} \hat{U}_{i}(\lambda)-\operatorname{Reg}}{\gamma}
$$

Guarantees in Sequential First-price Auctions

Theorem - Liquid Welfare guarantee

If players are γ-competitive then

$$
\mathrm{LW} \geq \frac{\mathrm{LW} W^{*}-O(n R e g)}{\gamma+\frac{1}{2}+O\left(\frac{1}{\gamma}\right)}
$$

Denominator is 2.41 when $\gamma=1$

Guarantee Intuition

Guarantee Intuition

1. $\hat{U}_{i}(\lambda)$ is "high"

Guarantee Intuition

1. $\hat{U}_{i}(\lambda)$ is "high"

- If λ runs out of budget:

$$
\hat{U}_{i}(\lambda) \geq\left(\frac{1}{\lambda}-1\right) B_{i}
$$

$$
\forall i, U_{i} \geq \frac{\max _{2} \hat{U}_{i}(\lambda)-\operatorname{Reg}}{\gamma}
$$

Guarantee Intuition

1. $\hat{U}_{i}(\lambda)$ is "high"

If λ runs out of budget:

$$
\hat{U}_{i}(\lambda) \geq\left(\frac{1}{\lambda}-1\right) B_{i}
$$

- If λ does not run out of budget:

$$
\hat{U}_{i}(\lambda) \geq f(\lambda) L W_{i}^{*}-g(\lambda) \sum_{t \in O_{i}} p_{t}
$$

player 1 $v_{1 t} \sim$.

$$
\forall i, U_{i} \geq \frac{\max _{\lambda} \hat{U}_{i}(\lambda)-\mathrm{Reg}}{\gamma}
$$

Guarantee Intuition

1. $\hat{U}_{i}(\lambda)$ is "high"

- If λ runs out of budget:

$$
\hat{U}_{i}(\lambda) \geq\left(\frac{1}{\lambda}-1\right) B_{i}
$$

- If λ does not run out of budget:

$$
\hat{U}_{i}(\lambda) \geq f(\lambda) L w_{i}^{*}-g(\lambda) \sum_{t \in O_{i}} p_{t}
$$

2. $L W_{i}$ is "high"

$$
\forall i, U_{i} \geq \frac{\max _{2} \hat{U}_{i}(\lambda)-\mathrm{Reg}}{\gamma}
$$

Guarantee Intuition

1. $\hat{U}_{i}(\lambda)$ is "high"

- If λ runs out of budget:

$$
\hat{U}_{i}(\lambda) \geq\left(\frac{1}{\lambda}-1\right) B_{i}
$$

- If λ does not run out of budget:

$$
\hat{U}_{i}(\lambda) \geq f(\lambda) L W_{i}^{*}-g(\lambda) \sum_{t \in O_{i}} p_{t}
$$

2. $L W_{i}$ is "high"

- If $V_{i} \leq B_{i}$: utility bound

$$
\forall i, U_{i} \geq \frac{\max _{\lambda} \hat{U}_{i}(\lambda)-\operatorname{Reg}}{\gamma}
$$

GUARANTEE INTUITION

1. $\hat{U}_{i}(\lambda)$ is "high"

- If λ runs out of budget:

$$
\hat{U}_{i}(\lambda) \geq\left(\frac{1}{\lambda}-1\right) B_{i}
$$

- If λ does not run out of budget:

$$
\hat{U}_{i}(\lambda) \geq f(\lambda) L W_{i}^{*}-g(\lambda) \sum_{t \in O_{i}} p_{t}
$$

2. $L W_{i}$ is "high"

- If $V_{i} \leq B_{i}$: utility bound

$$
\forall i, U_{i} \geq \frac{\max _{2} \hat{U}_{i}(\lambda)-\operatorname{Reg}}{\gamma}
$$

- If $V_{i}>B_{i}: L W_{i}=B_{i}$

Liquid Welfare Upper bounds

For any $\gamma \geq 1$ even if

$\forall i, U_{i} \geq \frac{\max _{\lambda} \hat{U}_{i}(\lambda)-\operatorname{Reg}}{\gamma}$

Liquid Welfare Upper bounds

```
For any \(\gamma \geq 1\) even if
    - \(n=2\)
    - \(v_{i t}=v_{i}\)
    players are \(\gamma\)-competitive, \(\operatorname{Reg} \leq 1\)
```


$\forall i, U_{i} \geq \frac{\max _{\lambda} \hat{U}_{i}(\lambda)-\operatorname{Reg}}{\gamma}$

Liquid Welfare Upper bounds

For any $\gamma \geq 1$ even if

- $n=2$
- $v_{i t}=v_{i}$
- players are γ-competitive, $\operatorname{Reg} \leq 1$
it can hold

$$
\mathrm{LW} \leq \frac{\mathrm{LW}^{*}}{\max \{\gamma, 2\}}
$$

2 PoA Bound

2 PoA Bound

$\square W^{*} \approx 2 \varepsilon T$

2 PoA Bound

LW* $\approx 2 \varepsilon T$

Alice

$$
\begin{gathered}
B_{1}=\varepsilon T \\
v_{1 t}=1
\end{gathered}
$$

Bob
$B_{2}=\varepsilon T$
$v_{2 t}=\varepsilon$

2 PoA Bound

$\square W^{*} \approx 2 \varepsilon T$
$\square i, U_{i}=\max _{\lambda} \hat{U}_{i}(\lambda)$

2 PoA Bound

- $L W^{*} \approx 2 \varepsilon T$
$\square i, U_{i}=\max _{\lambda} \hat{U}_{i}(\lambda)$
- $L W=\varepsilon T$

Sequential Submodular First-price Auctions

Sequential Submodular First-price Auctions

Theorem

If players are γ-competitive with submodular valuations then

$$
\mathrm{LW} \geq \frac{\mathrm{LW}^{*}-O(n \mathrm{Reg})}{\gamma+1+O\left(\frac{1}{\gamma}\right)}
$$

Denominator is 2.62 when $\gamma=1$.

Sequential Submodular First-price Auctions

Theorem

If players are γ-competitive with submodular valuations then

$$
\mathrm{LW} \geq \frac{\mathrm{LW}^{*}-O(n \mathrm{Reg})}{\gamma+1+O\left(\frac{1}{\gamma}\right)}
$$

Denominator is 2.62 when $\gamma=1$.

Theorem

Player i can guarantee with high probability

$$
U_{i} \geq \frac{\max _{\lambda} \hat{U}_{i}(\lambda)-\tilde{o}(\sqrt{T})}{T / B_{i}}
$$

if $B_{i}=\Omega(T)$.

player n

Theorem

Player i can guarantee with high probability

$$
U_{i} \geq \frac{\max _{\lambda} \hat{U}_{i}(\lambda)-\tilde{O}(\sqrt{T})}{T / B_{i}}
$$

if $B_{i}=\Omega(T)$.

- Matches $\mathcal{A}_{A P}$
- Best possible

player 1

player i
$v_{i t} \sim$ ©

player n
- Second-price:

1-competitive \nRightarrow bounded PoA

- First-price:
γ-competitive $\Longrightarrow \mathrm{PoA} \leq \gamma+\frac{1}{2}+O\left(\frac{1}{\gamma}\right)$
- PoA $\geq \max \{\gamma, 2\}$
- Submodular: $\mathrm{PoA} \leq \gamma+1+O\left(\frac{1}{\gamma}\right)$

Additive players can be $\frac{T}{B}$-competitive

[^0]: ${ }^{1}$ [Dobzinski-Paes Leme, ICALP'14]
 ${ }^{2}$ [Gaitonde-Light-Lucier-Slivkins, ITCS'23]

[^1]: ${ }^{1}$ [Dobzinski-Paes Leme, ICALP'14]
 ${ }^{2}$ [Gaitonde-Light-Lucier-Slivkins, ITCS'23]

