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valuations then

LW* — O(nReg)

LW >
'y+1+0(%)

Denominator is 2.62 when y = 1.

1/13



2o = Submodular “.:,:'
If players are y-competitive with submodular & . Lo
valuations then g e
By
Y 6 e
> LW* — O(NReg) ; e
- 1 T 4 s
y+1+0(5 I B e
B
Denominator is 2.62 when y = 1. 3 4 5 8 )

Competitive Ratio y

1/13



player 1 % player 7

player @

vy ~ @

DO (¢
¢
O (¢




Player i can guarantee with high probability

U > Maxa U;(1) - O(VT)

O (¢

T/B;
player 1 player n

player @

vy ~ @




Player i can guarantee with high probability

max, U;(1) - O(VT)

Ui >

DO (¢

T/B;
if B; = Q(T). 9
player 1 EETETD

= Matches Axp player i
= Best possible vit ~@




= Second-price:

1-competitive =& bounded PoA
= First-price:
y-competitive = POA<y+3+0 (%)
m PoA > max{y,2} 8 & &
= Submodular: POA <y +1+0 (%) player 1 Eliyfrg

v ~ & player i
m Additive players can be L-competitive vit ~ @




