
No-Regret Algorithms in non-Truthful Auctions with
Budget and ROI Constraints

Giannis Fikioris (while SR at Google),
Gagan Aggarwal, Mingfei Zhao

Google Reserach &
Cornell University

Setup

Automated Bidding
Global digital advertising: $750bn in 2024

Automated bidder interacting with stochastic environment

𝑇 rounds

Player Model

Budget 𝐵 & ROI constant 𝛾

Value 𝑣𝑡 and highest competing bid 𝑑𝑡

maximize value:
∑︁
𝑡

𝑣𝑡1 [𝑏𝑡 ≥ 𝑑𝑡]

subject budget:
∑︁
𝑡

𝑏𝑡1 [𝑏𝑡 ≥ 𝑑𝑡] ≤ 𝐵

ROI:
∑︁
𝑡

𝑏𝑡1 [𝑏𝑡 ≥ 𝑑𝑡] ≤ 𝛾
∑︁
𝑡

𝑣𝑡1 [𝑏𝑡 ≥ 𝑑𝑡]

Stationary environment: (𝑣𝑡, 𝑑𝑡) ∼ D

Learning to bid

Bidding function: 𝑏𝑡 = 𝑓 (𝑣𝑡)
Any 𝑓 =⇒ impossible to learn

Class of bidding functions F
[Lucier, Pattathil, Slivkins, Zhang] & [Fikioris, Tardos]:
F = linear functions
▶ loss of utility in simple examples:

· Value 𝑣𝑡 ∼ 𝑈 [0, 1]
· Competing bid 𝑑𝑡 = 1/2

This work: F = Lipschitz functions

Theorem 1 – Full Information
Online learning algorithm that
• exact budget and ROI satisfaction

• total value 𝑂
(√
𝑇
)
suboptimal wrt optimal Lipschitz bidding

When 𝑑𝑡 is not revealed after round 𝑡:

Theorem 2 – Bandit information

No algorithm 𝑂 (𝑇 2/3) suboptimal, even if 𝑣𝑡 = 1
There exists algorithm that is 𝑂 (𝑇 3/4) suboptimal

All results apply to

• first-price/second-price/hybrid auctions

• value maximizers or quasi-linear utilities

Primal / Dual Framework

Maximize / Minimize Lagrangian:

max
𝑓

min
𝜆,𝜇

(
𝑣𝑡 + 𝜆 ·

(
𝐵/𝑇 − 𝑓 (𝑣𝑡)

)
+ 𝜇 ·

(
𝛾 𝑣𝑡 − 𝑓 (𝑣𝑡)

) )
1 [ 𝑓 (𝑣𝑡) ≥ 𝑑𝑡]

Online algorithms that pick 𝑓 and 𝜆, 𝜇.

[Castiglioni, Celli, Kroer]: OGD for 𝜆, 𝜇 & “right” primal for 𝑓

▶ low error for constrained problem

Full Paper Link

Algorithm

Full information

Safe bidding

Bidding function 𝑓 ∈ F could have negative Lagrangian reward

“Safe” bid for round 𝑡: 𝑏◦𝑡 = min
{
1+𝜇𝑡
𝜆𝑡+𝜇𝑡𝑣𝑡, 1

}
▶ If ∃𝑑𝑡 where 𝑓 (𝑣𝑡) has negative reward, 𝑏◦𝑡 always better

Tree algorithm

F𝜀: 𝜀-cover of Lipschitz functions, |F𝜀 | = exp
(
Θ(1/𝜀)

)
▶ Hedge would get 𝑇 2/3 regret

Arrange F𝜀 into a tree where “similar” functions are “close”
▶ Leaves are fixed 𝑓 ∈ F𝜀

▶ Non-leaves combine children via Hedge-like algorithm

Similar to [Cesa-Bianchi, Gaillard, Gentile, Gerchinovitz] and
[Han, Zhou, Flores, Ordentlich, Weissman]

Range-agnostic Regret

Reward upper bound 𝑈𝑡 ∝ 𝜆𝑡, 𝜇𝑡 unknown before round 𝑡

Hedge with learning rate 𝜂𝑡 ∝ 1
𝑈𝑡

achieves regret 𝑂
(
𝑈𝑡

√
𝑡
)

▶ similar to 𝑈𝑡 being known

Interval Regret

Primal/Dual framework requires interval regret

Low regret in every interval [𝑇1, 𝑇2]
Black-box reduction: standard regret A =⇒ interval regret
▶ Hedge over 𝑇 instances of A, each starting at round 𝑡

Exact ROI Satisfaction
Previous algorithm violates ROI
▶ but whp violation ≤ 𝑂 (

√
𝑇)

Black box reduction: when constraint almost violated, bid to

max
𝑓

(
𝛾𝑣𝑡 − 𝑓 (𝑣𝑡)

)
1 [ 𝑓 (𝑣𝑡) ≥ 𝑑𝑡]

Re-formulation of Lagrangian
▶ safe bids ensures non-negative

Used for 𝜏 rounds, increases slack by Θ(𝜏) −𝑂 (
√
𝜏)

Dynamic instead of static ([Feng, Padmanabhan, Wang])

Bandit Information

𝑣𝑡 = 1, no ROI

Base CDF: “All” bids optimal

Perturbation hides optimal bid
▶ Small enough: hard to find
▶ Large enough: need to find

Ω(𝑇 2/3) regret

Similar to [Kleinberg, Leighton]
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