No-Regret Algorithms in non-Truthful Auctions with Budget and ROI Constraints

Giannis Fikioris (while SR at Google), Gagan Aggarwal, Mingfei Zhao

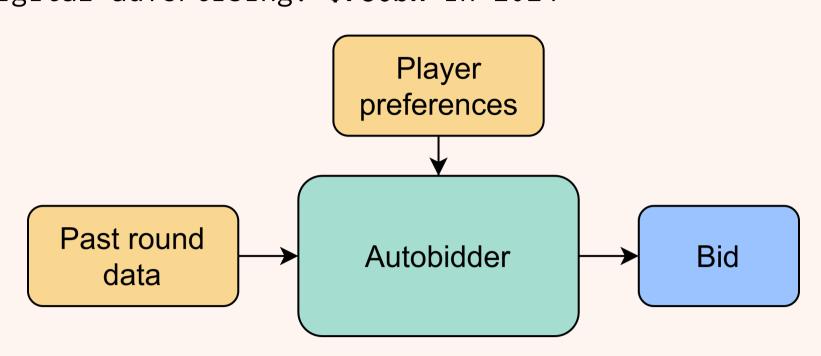
Google Reserach & Cornell University

Setup

Algorithm

Automated Bidding

Global digital advertising: \$750bn in 2024



Automated bidder interacting with stochastic environment T rounds

Player Model

Budget B & ROI constant γ

Value v_t and highest competing bid d_t

maximize value:
$$\sum_{t} v_{t} \mathbf{1} \begin{bmatrix} b_{t} \geq d_{t} \end{bmatrix}$$
 subject budget:
$$\sum_{t} b_{t} \mathbf{1} \begin{bmatrix} b_{t} \geq d_{t} \end{bmatrix} \leq B$$
 ROI:
$$\sum_{t} b_{t} \mathbf{1} \begin{bmatrix} b_{t} \geq d_{t} \end{bmatrix} \leq \gamma \sum_{t} v_{t} \mathbf{1} \begin{bmatrix} b_{t} \geq d_{t} \end{bmatrix}$$

Stationary environment: $(v_t, d_t) \sim \mathcal{D}$

Learning to bid

Bidding function: $b_t = f(v_t)$

Any $f \implies \text{impossible to learn}$

Class of bidding functions ${\mathcal F}$

[Lucier, Pattathil, Slivkins, Zhang] & [Fikioris, Tardos]:

 $\mathcal{F} = linear functions$

▶ loss of utility in simple examples:

· Value $v_t \sim U[0,1]$

· Competing bid $d_t = 1/2$

This work: $\mathcal{F} = \text{Lipschitz functions}$

Theorem 1 - Full Information

Online learning algorithm that

- exact budget and ROI satisfaction
- total value $\widetilde{O}(\sqrt{T})$ suboptimal wrt optimal Lipschitz bidding

When d_t is not revealed after round t:

Theorem 2 - Bandit information

No algorithm $O(T^{2/3})$ suboptimal, even if $v_t=1$ There exists algorithm that is $\widetilde{O}(T^{3/4})$ suboptimal

All results apply to

- first-price/second-price/hybrid auctions
- value maximizers or quasi-linear utilities

Primal / Dual Framework

Maximize / Minimize Lagrangian:

$$\max_{f} \quad \min_{\lambda,\mu} \quad \left(v_t + \lambda \cdot \left(\frac{B}{T} - f(v_t) \right) + \mu \cdot \left(\gamma v_t - f(v_t) \right) \right) \mathbf{1} \left[f(v_t) \ge d_t \right]$$

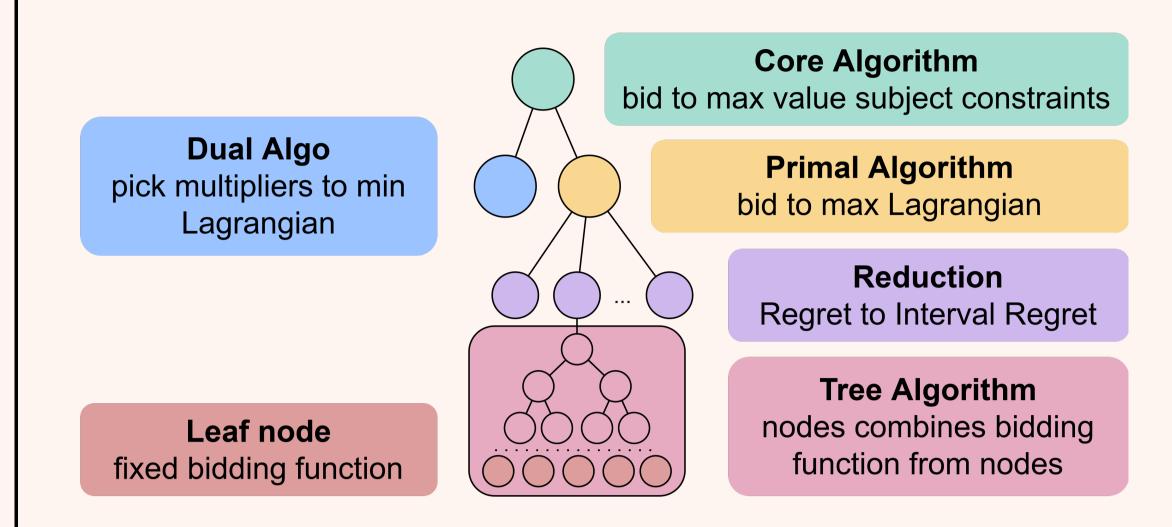
Online algorithms that pick f and λ, μ .

[Castiglioni, Celli, Kroer]: OGD for λ, μ & "right" primal for f

▶ low error for constrained problem

Full Paper Link

Full information



Safe bidding

Bidding function $f \in \mathcal{F}$ could have negative Lagrangian reward "Safe" bid for round t: $b_t^{\circ} = \min\left\{\frac{1+\mu_t}{\lambda_t+\mu_t}v_t, 1\right\}$

▶ If $\exists d_t$ where $f(v_t)$ has negative reward, b_t° always better

Tree algorithm

 $\mathcal{F}_{\varepsilon}$: ε -cover of Lipschitz functions, $|\mathcal{F}_{\varepsilon}| = \exp(\Theta(1/\varepsilon))$

▶ Hedge would get $T^{2/3}$ regret

Arrange $\mathcal{F}_{\varepsilon}$ into a tree where "similar" functions are "close"

- ▶ Leaves are fixed $f \in \mathcal{F}_{\varepsilon}$
- ▶ Non-leaves combine children via Hedge-like algorithm

Similar to [Cesa-Bianchi, Gaillard, Gentile, Gerchinovitz] and [Han, Zhou, Flores, Ordentlich, Weissman]

Range-agnostic Regret

Reward upper bound $U_t \propto \lambda_t, \mu_t$ unknown before round t

Hedge with learning rate $\eta_t \propto \frac{1}{U_t}$ achieves regret $O(U_t \sqrt{t})$

ightharpoonup similar to U_t being known

Interval Regret

Primal/Dual framework requires interval regret

Low regret in every interval $[T_1, T_2]$

Black-box reduction: standard regret $\mathcal{A} \implies$ interval regret

▶ Hedge over T instances of \mathcal{A} , each starting at round t

Exact ROI Satisfaction

Previous algorithm violates ROI

▶ but whp violation $\leq O(\sqrt{T})$

Black box reduction: when constraint almost violated, bid to

$$\max_{t} \quad (\gamma v_{t} - f(v_{t})) \mathbf{1} \left[f(v_{t}) \geq d_{t} \right]$$

Re-formulation of Lagrangian

▶ safe bids ensures non-negative

Used for τ rounds, increases slack by $\Theta(\tau) - O(\sqrt{\tau})$

Dynamic instead of static ([Feng, Padmanabhan, Wang])

Bandit Information

 $v_t = 1$, no ROI

Base CDF: "All" bids optimal

Perturbation hides optimal bid

- ► Small enough: hard to find
- ► Large enough: need to find

 $\Omega(T^{2/3})$ regret

Similar to [Kleinberg, Leighton]

