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Global digital advertising: $750bn in 2024
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ROI: Zb,l [b; > d;] < sztl (b, > d;] » Hedge would get 7T</° regret
7 7 Arrange ¥, into a tree where “similar” functions are “close”

» Leaves are fixed f € ¥,

Staedenary environments (%, ) ~ L » Non-leaves combine children via Hedge-like algorithm

Learning to bid Similar to [Cesa-Bianchi, Gaillard, Gentile, Gerchinovitz] and
[Han, Zhou, Flores, Ordentlich, Weissman]
Bidding function: b; = f(v;)

Any f = impossible to learn Range-agnostic Regret
Class of bidding functions ¥ Reward upper bound U; o«c A, u; unknown before round ¢
[Lucier, Pattathil, Slivkins, Zhang] & [Fikioris, Tardos]: Hedge with learning rate mocUi achieves regret 0~(U,;\/f)
F = linear functions » similar to U; being known
» loss of utility in simple examples:
- Value v, ~ U[0, 1] Interval Regret

- Competing bid d;, =1/2

This work: ¥ = Lipschitz functions Primal/Dual framework requires interval regret
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Theorem 1 - Full Information ow regret in every interval [T}, T5]

Online learning algorithm that Black-box reduction: standard regret A =— 1interval regret
» Hedge over T instances of A, each starting at round ¢

- exact budget and ROI satisfaction
- total value O(VT) suboptimal wrt optimal Lipschitz bidding

When d; is not revealed after round ft: Exact ROI Satisfaction

Theorem 2 - Bandit information Previous algorithm violates ROI

No algorithm O(T?/3) suboptimal, even if v, =1 > but whp violation < O(VT)

There exists algorithm that is O(T°/*) suboptimal Black box reduction: when constraint almost violated, bid to
All results apply to m?x (yv: = f(Vt))l [f(ve) = di]

- first-price/second-price/hybrid auctions Re-formulation of Lagrangian

- value maximizers or quasi-linear utilities » safe bids ensures non-negative

Used for 7 rounds, increases slack by O(t) — O(+/7)
Primal / Dual Framework Dynamic instead of static ([Feng, Padmanabhan, Wangl)

Maximize / Minimize Lagrangian:

max 1min (V;+/l . (B/T_ f(vl)) + - (7Vt _ f(vt)))]- [f(vt) > dt] Bandlt Informatlon
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Online algorithms that pick f and A4, u. v, =1, no ROI 9 9] ---- CDF Perturbation
. . . . ) G o o . —— CDF Perturbation
[Castiglioni, Celli, Kroer.]. OGD for A,u & “right” primal for f Base CDF: “All” bids optimal 0.84 et Ml i
» low error for constrained problem
Perturbation hides optimal bid 0.71

» Small enough: hard to find 0.6
» Large enough: need to find

Q(TQ/B) regret 0.4- e
Similar to [Kleinberg, Leighton] ;5
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